A set of tournaments with many Hamiltonian cycles

نویسندگان

  • Hayato Ushijima-mwesigwa
  • Daniel Warner
چکیده

For a random tournament on 3n vertices, the expected number of Hamiltonian cycles is known to be (3n− 1)!/23 . Let T1 denote a tournament of three vertices v1,v2,v3. Let the orientation be such that there are directed edges from v1to v2 , from v2 to v3 and from v3 to v1. Construct a tournament Ti by making three copies of Ti−1, T ′ i−1, T ′′ i−1 and T ′′′ i−1. Let each vertex in T ′ i−1 have directed edges to all vertices in T ′′ i−1, similarly place directed edges from each vertex in T ′′ i−1 to all vertices in T ′′′ i−1 and from T ′′′ i−1 to T ′ i−1. In this thesis, we shall study this family of highly symmetric tournaments. In particular we shall present two different algorithms to calculate the number of Hamiltonian cycles in these tournaments and compare them with the expected number and with known bounds for random tournaments. This thesis is motivated by the question of the maximum number of Hamiltonian cycles a tournament can have.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-disjoint Hamiltonian Paths and Cycles in Tournaments

We describe sufficient conditions for the existence of Hamiltonian paths in oriented graphs and use these to provide a complete description of the tournaments with no two edge-disjoint Hamiltonian paths. We prove that tournaments with small irregularity have many edge-disjoint Hamiltonian cycles in support of Kelly's conjecture.

متن کامل

Paths, Trees and Cycles in Tournaments

We survey results on paths, trees and cycles in tournaments. The main subjects are hamiltonian paths and cycles, vertex and arc disjoint paths with prescribed endvertices, arc-pancyclicity, oriented paths, trees and cycles in tournaments. Several unsolved problems are included.

متن کامل

Hamiltonian paths and cycles in hypertournaments

Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V | = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V , A contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2a2v3...vt−1at−1vt of disti...

متن کامل

Local Tournaments and In - Tournaments

Preface Tournaments constitute perhaps the most well-studied class of directed graphs. One of the reasons for the interest in the theory of tournaments is the monograph Topics on Tournaments [58] by Moon published in 1968, covering all results on tournaments known up to this time. In particular, three results deserve special mention: in 1934 Rédei [60] proved that every tournament has a directe...

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016